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Abstract

We point out that the positivity of a Littlewood-Richardson coef-
ficient c

γ
α,β for sln can be decided in strongly polynomial time. This

means that the number of arithmetic operations is polynomial in n

and independent of the bit lengths of the specifications of the parti-
tions α, β and γ, and each operation involves numbers whose bitlength
is polynomial in n and the bit lengths α, β and γ.

Secondly, we observe that non-vanishing of a generalized Littlewood-
Richardson coefficient of any type can be decided in strongly polyno-
mial time assuming an analogue of the saturation conjecture for other
types, and that for weights α, β, γ the positivity of c2γ

2α,2β can (uncon-
ditionally) be decided in strongly polynomial time.
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1 Introduction

The fundamental Littlewood-Richardson rule in representation theory [4]
states that the tensor product of two irreducible representations (Weyl mod-
ules) Vα and Vβ of a complex semisimple Lie algebra G decomposes as follows:

Vα ⊗ Vβ = ⊕γC
γ
α,βVγ , (1)

where C
γ
α,β are generalized Littlewood-Richardson coefficients. Here α, β

and γ denote highest weights of G. When G = sln(C) (type A), α and β are
partitions (Young diagrams) with at most n rows, and the sum is over all
Young diagrams γ of height at most n and size equal to the sum of the sizes
of α and β.

We are interested in finding an efficient algorithm to decide if Cγ
α,β is

nonvanishing (positive). As will be explained below (Section 1.1), this prob-
lem arises naturally in the geometric complexity theory approach [14, 15, 16]
towards the P vs. NP and related problems.

It has been observed in [12, 11, 17] independently that when G = sln(C)
(type A) nonvanishing of Cγ

α,β can be decided in polynomial time; i.e., in
time that is polynomial in n and the bitlengths of the specifications of the
partitions α, β and γ. Furthermore, the algorithm in [17] is strongly polyno-
mial in the sense of [13]. We say that an algorithm is strongly polynomial if
the number of arithmetic steps in the algorithm is polynomial in the number
of input parameters, independent of their total bitlength, and the bit length
of each intermediate operand that arises in the algorithm is polynomial in
the total bitlength of the input. We shall also use slight variants of this def-
inition as per the problem. In particular, strong polynomiality here means:
(1) the number of arithmetic steps in the algorithm is polynomial in n. It
does not depend on the bit lengths of αi, βj , and γk’s. (2) The bit length of
every intermediate operand that arises in the algorithm is polynomial in n

and the total bit length of α, β and γ. One crucial ingredient in this algo-
rithm is the saturation theorem in [10], which does not hold for simple Lie
algebras of type B,C or D [26]. The result in [17] was extended to other
types in [18] assuming a positivity conjecture in [12]. This article combines
the results of [17] and [18]. We now state these results in more detail.

First, we consider type A, i.e., when G = sln(C). Let λ = (λ1, · · · , λn),
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, be a partition (Young diagram); here each λi is
integral and λi = 0 for i higher than the height of λ. By the bit length 〈λ〉
of λ, we mean the total bit length of its specification.
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Theorem 1.1 Given partitions α, β and γ, whether C
γ
α,β is positive can be

decided in polynomial time, and in fact, in strongly polynomial time.

For general types, we have:

Theorem 1.2 The positivity of a generalized Littlewood-Richardson coef-
ficient Cν

λ,µ for any complex semi-simple Lie algebra G can be decided in
strongly polynomial time, assuming the following positivity conjecture made
in [12].

Let C̃(n) = C̃
µ
λ,µ(n) = Cnν

nλ,nµ denote the stretching function associated

with Cν
λ,µ. Assume that the type of G is B,C or D. Then C̃(n) is a quasi-

polynomial of period at most two [12]. That is, there exist polynomials
C̃1(n) and C̃2(n) such that

Cnν
nλ,nµ =

{

C̃1(n), if n is odd;

C̃2(n), if n is even.

Conjecture 1.3 (Positivity conjecture) [12]

The quasi-polynomial C̃(n) = C̃ν
λ,µ(n) is positive–i.e., the coefficients of

C̃i(n), i = 1, 2, are nonnegative.

This is an extension of an analogous earlier conjecture in [9] for type A.
Considerable experimental evidence for these conjectures has been given in
these papers.

Here it is assumed that each highest weight is specified by giving its
coordinates in the basis of fundamental weights. The bitlength 〈λ〉 is defined
to be the total bitlength of all coordinates.

Remark 1.4 For Theorem 1.2 to hold, we do not need the full statement of
the Positivity Conjecture, but only the following analogue of saturation for
Lie groups of types B, C, D:

Cν
λµ = 0 =⇒ ∀ odd n,Cnν

nλ,nµ = 0.

In fact the following weaker hypothesis suffices: A generalized Littlewood-
Richardson coefficient is non-zero if the affine span of the corresponding
BZ-polytope [1] contains an integer point.
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Finally, we observe that the proof of Theorem 1.1 can be extended to
general types using the recent results in [2] and [22]:

Theorem 1.5 The positivity of a generalized Littlewood-Richardson coeffi-
cient C2ν

2λ,2µ for any complex semi-simple Lie algebra G can be decided in
strongly polynomial time.

1.1 Significance in geometric complexity theory

Now we explain the significance of the results in this paper in the context
of the geometric complexity theory (GCT) [14, 15, 16] approach to the per-
manent vs. determinant problem [25], an algebraic prototype of the P vs.
NP problem.

The problem is to show that perm(X), the permanent of the n times
n variable matrix, cannot be represented as the determinant of an m × m

matrix Y whose each entry is a rational (or complex) affine combination of
the entries of X, if m = poly(n). The articles [15, 16] reduce this problem to
the problem of proving existence of a geometric obstruction (proof certificate
of hardness) when m = poly(n). A geometric obstruction is a Weyl module
Vλ(G), G = GLm2(C), that occurs as a G-subrepresentation of the (dual
of the) homogeneous coordinate ring of a certain G-variety ∆[perm, n,m]
associated with the permanent but not in the (dual of the) homogeneous
coordinate ring of a similar G-variety ∆[det,m] associated with the deter-
minant. The goal (cf. [19]) is to construct the labelling partition λ of some
geometric obstruction explicitly in poly(n,m) time when m = poly(n). The
reason we are going for explicit construction, when proving existence of an
obstruction even nonconstructively suffices in principle, is the Flip theorem
(cf. [14, 20]) which says that we are essentially forced to construct some
proof certificate of hardness explicitly in the problem under consideration.

In more detail, the explicit proof strategy, called the flip [19, 20], is the
following: (1)[Verification]: Find a (strongly) polynomial time algorithm
for verifying if a given λ is a geometric obstruction label for given n and
m. Strongly polynomial here means the number of arithmetic steps in the
algorithm is poly(n,m), independent of the bitlength of λ, and the bitlengths
of the intermediate operands are poly(n,m.〈λ〉). (2) [Discovery]: Use this
efficient verification criterion to decide if a geometric obstruction exists for
given n and m in poly(n,m) time. If it does, construct one such geometric
obstruction label explicitly in the same time. (3) [Program correctness]:
Show that the discovery algorithm in (2) always succeeds if m = poly(n).
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The upper bound problems in algebraic geometry and representation
theory that arise in (1) and (2) seem well beyond the reach of the existing
techniques. The article [19], in conjunction with [15] and [16], describes an
approach to these problems based on some intermediate upper bound prob-
lems in representation theory, such as the problem of deciding nonvanishing
of the Kronecker coefficients [4] in (strongly) polynomial time. Since the
Littlewood-Richardson coefficient is a special case of the Kronecker coeffi-
cient, the problem of deciding its nonvanishing is a basic prototype of the far
harder decision problems in algebraic geometry and representation theory
that arise in GCT. This is the main motivation for studying this problem
in this paper. The (strongly) polynomial time algorithm for this problem in
this paper serves as a basic prototype for the approach in [19] to the harder
upper bound problems in algebraic geometry and representation theory that
arise in GCT.

We should also explain why we are going for strongly polynomial time
algorithms instead of just polynomial time algorithms. For the step (3)
above to succeed, it is not enough if the algorithms in the steps (1) and
(2) are just efficient in theory. They also have to be simple enough so
that they can be used to carry out the step (3) successfully. The notion
of a strongly polynomial time algorithm was proposed [13] in complexity
theory to develop polynomial time algorithms that are simple in practice. As
was pointed out in [13], most problems that have strongly polynomial time
algorithms eventually turn out to have strongly polynomial time algorithms
that are combinatorial in nature, simple in practice, and do not depend on
complicated numerical procedures such as linear programming. In the same
spirit, the strategy here is to find strongly polynomial time algorithms for
the various decision problems that arise in GCT first and eventually find
simpler combinatorial algorithms (not based on linear programming) that
can be used to carry out the step (3) successfully.

Since this paper gives a strongly polynomial time algorithm for deciding
nonvanishing of Littlewood-Richardson coefficient, we expect, as per this
general paradigm, a simpler combinatorial strongly polynomial time algo-
rithm that does not use linear programming. The recent article [3] takes
an important step in this direction. Motivated by the result in this article,
it gives a polynomial time combinatorial algorithm based on max-flows for
deciding nonvanishing of Littlewood-Richardson coefficients in type A. But
it is still not strongly polynomial.

The rest of this article is organized as follows. Theorem 1.1 is proved in
Section 2, Theorem 1.2 in Section 3 and Theorem 1.5 in Section 4.
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2 Littlewood-Richardson coefficient of type A

Here we prove Theorem 1.1. The proof follows easily from the following
three results:

1. Littlewood-Richardson rule: specifically, a polyhedral interpretation
of the Littlewood-Richardson coefficients based on the Hive polytope
[10]; one could also use the BZ-polytope [1] instead.

2. Saturation Theorem [10].

3. Polynomial time algorithm for linear programming: e.g. the ellipsoid
or the interior point method, and the related strongly polynomial time
algorithm for combinatorial linear programming in [13].

As per the polyhedral interpretation of the Littlewood-Richardson rule
in [10], the Littewood-Richardson coefficient C

γ
α,β can be expressed as the

number of integer points in a hive polytope P = P
γ
α,β which can be specified

by an explicit linear program of the form

Ax ≤ b (2)

such that: (1) Given α, β and γ, this specification can be computed in
strongly polynomial time. (2) The linear program is combinatorial in the
terminology of [24]. This means the entries of A have constant bit lengths
(in fact, they are just 0, 1 or −1). (3) The entries of b are homogeneous
integral linear forms in αi, βj and γk’s.

Claim 2.1 The polytope P contains an integer point iff it is nonempty.

Proof: One direction is trivial.

Suppose P is nonempty. Since b is homogeneous in α, β and γ, it follows
that, for any positive integer q, Cqγ

qα,qβ is the number of integer points in
the scaled polytope qP . All vertices of P have rational coefficients. Hence,
for some positive integer q, the scaled polytope qP has an integer point. It
follows that, for this q, Cqγ

qα,qβ is positive. Saturation Theorem [10] says that,

in this case, Cγ
α,β is positive. Hence, P contains an integer point. Q.E.D.

Whether P is nonempty can be determined in polynomial time using ei-
ther the ellipsoid or the interior point algorithm for linear programming.
Since the linear program (2) is combinatorial, this can also be done in
strongly polynomial time using the combinatorial linear programming al-
gorithm in [24]. This proves Theorem 1.1.
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3 Generalized Littlewood-Richardson Coefficients

In this section we prove Theorem 1.2.

Let P = P ν
λ,µ denote the BZ-polytope [1] whose Ehrhart quasi-polynomial

coincides with C̃ν
λ,µ(n).

Definition 3.1 For any subset B of Qn, its affine span over rationals,
Aff(B), is

{

v
∣

∣ ∃({vi} ⊆ B, {αi} ⊆ Q), such that
n
∑

i=1

αi = 1 and v =
n
∑

i=1

αivi

}

.

Let Z<2> denote the subring of Q obtained by localizing Z at 2–i.e.,
the subring of fractions with odd denominators. We will call a point in Rd

rational if all its co-ordinates are rational.

Lemma 3.2 Assume that G is simple of type B,C or D. If the positivity
conjecture is true, the following are equivalent:

(1) Cν
λµ ≥ 1.

(2) There exists an odd integer n such that Cnν
nλnµ ≥ 1.

(3) P contains a point in Zd
<2>.

(4) Aff(P ) contains a point in Zd
<2>.

Proof: Clearly, the first three statements are equivalent, and (3) implies (4).
It remains to show that (4) implies (3). Let z ∈ Zd

<2> ∩Aff(P ).

The 0−dimensional case is trivial since {z} = P . Suppose that the
dimension of P is greater or equal to 1. Since z has rational coordinates and
is contained in Aff(P ), z = ax + (1 − a)y for some distinct rational points
x, y ∈ P , and a ∈ Q. Let q be a positive integer such that 2q(x− y) ∈ Zd

<2>.

The set {z+λ2q(x−y)
∣

∣λ ∈ Z<2>} is a dense subset of Aff({x, y}) in the
topology induced by the standard topology of Rn, and is therefore nonempty.
Thus P ∩ Zd

<2> ∩ {z + λ2q(x− y)
∣

∣λ ∈ Z<2>} 6= ∅. Q.E.D.

Now we turn to the proof of Theorem 1.2. First, let us assume that G is
simple of type B,C, or D.
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The specification of an explicit linear program of the form Ax ≤ b defin-
ing the BZ-polytope P = P ν

λ,µ can be computed in strongly polynomial time
using its description in [1]. It is also clear from [1] that the entries of A here
have constant bit lengths. In the terminology of [24], this linear program
is combinatorial. Hence, we can determine if P is nonempty in strongly
polynomial time by the combinatorial linear programming algorithm in [24].
If P is nonempty, this algorithm can also be extended to find an integral
matrix C and an integral vector D so that Aff(P ) is defined by the linear
system Cx = D. One way of achieving this is the following. Find, for ev-
ery constraint hyperplane h of P , a vertex vh of P that is the farthest to
h. The affine span is the intersection of all constraint hyperplanes h such
that vh ∈ h. Usual linear programming algorithms [7, 8] here, in place of
the algorithm in [24], will yield a polynomial time algorithm, instead of a
strongly polynomial time algorithm.

By Lemma 3.2 (4), it remains to check if Aff(P ) contains a point in Zd
<2>.

This can be done as follows. By padding, if necessary, we can assume that C
is square. Using [5], we find the Smith normal form S of C and unimodular
matrices U and V such that C = USV ; here S is a diagonal integer matrix,
whose i-th diagonal entry divides the (i + 1)-st diagonal entry. Since the
entries of C have constant bit lengths, the algorithm in [5] works in strongly
polynomial time. The question now reduces to checking if USV x = D has a
solution x ∈ Zd

<2>. This is so iff Sy = U−1D has a solution y ∈ Zd
<2>. Since

S is diagonal, this can be verified in (strongly) polynomial time by checking
each coordinate.

This proves Theorem 1.2 for types B,C,D.

Now let G be any semisimple algebra. A generalized Littlewood-Richardson
coefficient for G is the product of corresponding generalized Littlewood-
Richardson coefficients for each of its simple factors. Hence, without loss
of generality, we can assume that G is simple. If it is of type A, then
Theorem 1.2 holds unconditionally by Theorem 1.1. If it is an excep-
tional simple Lie algebra, then a Littlewood-Richardson coefficient can be
computed in O(1) arithmetic steps. This is because, when the rank of
G is constant, the chambers of quasi-polynomiality [23] of the generalized
Littlewood-Richardson coefficient, considered as a vector partition function,
are generated by O(1) constraints.

This proves Theorem 1.2.
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4 Proof of Theorem 1.5

Suppose first that G is of type B,C, or D. By [2] and [22], it follows that if
there exists an integer n such that Cnν

nλ,nµ ≥ 1, then, C2ν
2λ,2µ ≥ 1. A weaker

form of this result (with 4 in place of 2) was proven in [6]. By the argument
in Section 3, C2ν

2λ,2µ ≥ 1 if and only if the BZ polytope P ν
λ,µ is nonempty,

which can be checked in strongly polynomial time. The argument towards
the end of subsection 3 allows the algorithm to be extended to arbitrary
semisimple groups. Q.E.D.

Acknowledgement: We are grateful to T. McAllister for bringing the posi-
tivity conjecture in [12] to our attention, and to Apoorva Khare for helpful
discussions.
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